

大学祭 研究室公開・パネル展示のご案内

基礎工学部·基礎工学研究科

令和7年11月1日(土)~11月3日(月)

阪大「ワニ博士」基礎工学部の頃

NO.	タイトル	概要	日時	研究室名	場所
1	基礎工学部・基礎工学研究科 パネル展示	基礎工学部・基礎工学研究科で行われている研究などを、パネル展示にて紹介します。	1~3日 10時~17時		A棟1階 正面玄関待合ホール
2	乱流のつくる美しい世界	空気や水などの流体の乱れた流れは「乱流」と呼ばれ、我々の身の回りに溢れています。一見すると複雑でとらえどころのない乱流ですが、ぐっと目を凝らしてみると美しい世界が見えてきます。本企画では、乱流現象について最先端の研究事例を交えながらご紹介します。	3日 13時~16時	河原研究室	A棟 1階 A118
3	未来を拓く小さな機械 マイクロ・ナノマシンの世界へ ようごそ	本研究室では、最先端の加工技術によって、"目には見えない"マイクロ・ナノマシンをつくっています。これらの技術は、「ウイルスの謎を解明するセンサー」や「聴覚障がい者のために音を取り戻す 医療機器」等幅広い分野で応用され、未来のイノベーションを支えています!これらの研究テーマに触れながら、"目には見えない"世界を特別公開します。ぜひ、小さなものが持つ力、微細な技術が創り出す未来の可能性を感じてください。幅広い世代の方々に興味を持っていただけるような内容をご用意していますので、ぜひご家族やお友達と一緒にお越しください。	1日 10時~16時	川野研究室	A棟 1階 A123
4	細み板で遊ぼう!	当研究室では小さな力で変形する柔らかい材料の研究を行っています。編み紙は当研究室で開発した技術で、紙を編んで曲面模型を作る方法です。難易度の異なる模型を準備しますので、小さなお子さんから大人まで、幅広い世代の方々に楽しんで頂けます。作った模型は記念にお持ち帰り頂けます。中高生向けに当研究室の他の研究成果についても紹介します。	1日 10時~17時	垂水研究室	A棟 1階 A134
5	光で硬さが変化する結晶の話: 牛導体の光力学特性	結晶は硬くて脆いもの、そんな常識が覆るかもしれません!私たちの身の回りにあふれる「半導体」と、ごく当たり前に存在する「光」。これらが織りなす不思議な現象についてご紹介します。	1日 13時~16時	中村研究室	A棟 1階 A158
	大阪大学における 「デジタル・トランスフォーメーショ ン」	鎗水・春本研究室は、デジタル技術を活用してビジネスや社会に革新をもたらす研究を行い、阪大のDX推進や地域社会への貢献に取り組んでいます。今回は、「日本DX大賞」で大賞を受賞した阪大のDXの取り組みを通じ、阪大のDXがどのように教育・研究・経営を変革し、「ひとりひとりの人生に寄り添った大学」の姿を目指しているかをご紹介します。また、デジタル学生証など全国に先駆けた新たなデジタル体験もご体感いただけます。ぜひお越しください。	3日 13時~16時	鎗水·春本 研究室 (情報科学 研究科)	B棟 1階 B105
7	光で色が変わる! 不思議なインク でスパイの手紙を書こう	光を当てると色が変わる現象(フォトクロミック反応)によって、一瞬で色がついたり消えたりする 分子材料を紹介し、実際に光による色変化の様子を観察します。 さらに、フォトクロミック分子を 使ったインクで、光を当てると一瞬で浮かび上がる絵を描いてもらいます。	1日 10時~15時	倉持研究室	C棟 1階 C114
8	環境に優しい「ものづくり」を 実現するナノ触媒の開発	我々の研究室では、資源・エネルギー・環境問題の解決に向けて環境に優しいものづくりを目指し、世界最高性能の「触媒」の開発を行っています。今回は、当研究室で開発された金属ナノ粒子触媒の紹介や水素発生触媒を用いた燃料電池のデモンストレーション実験を実施します。	3日 11時~15時	水垣研究室	C棟 4階 C431
9	久木研究室公開 〜分子結晶の集合英を垣間みる〜	新しい分子を合成しその集まり方を制御することによって、様々な機能をもつ有機材料を創出することができます。本企画では、有機分子の合成や美しい分子集積構造の解析など、私たちが取り組んでいる分子集積化学の最先端研究の一端をご紹介します。	2日 10時~15時	久木研究室	C棟 5階 C507
10	ミケロな孔での「ものづくり」 「プラスチッケリサイケル」を 実現する触媒の開発	西山研究室では、資源・エネルギー・環境問題の解決に向けて環境に優しいものづくりを目指し、ミクロな孔をもつ「ゼオライト触媒」の開発を行っています。CO2からPETボトルの原料であるパラキシレンをつくる触媒と、プラスチックリサイクルのための触媒について、ミクロな孔をもつゼオライトの模型を用いて説明します。	2日 11時~15時	西山研究室	C棟 5階 C545
11	流れの科学	船舶や車両などの省エネ・高効率化を実現するための学問「流体力学」について説明します。 空気や水の流れを記述する「流体力学」は工学的に重要なだけでなく、雲の動きや海洋の流れ も支配するため、自然科学の現象を理解する上でも極めて重要な学問です。身の回りの機器 を安全かつ高速で動かすための取り組みや、自然の流れが作り出す美しい模様の仕組みについ て紹介します。	3日 10時~12時	杉山研究室	D棟 1階 D116
12	電子と光の融合による 新たなデバイスとシステムの 創成を目指して	社会を支えるエレクトロニクスと光、量子、情報の科学と技術を融合させることで、省エネルギー、高速、安全で新たな価値を産み出すデバイスシステムの創成を目指しています。大学祭では、電波と光の境界領域の周波数「テラヘルツ」で動作するデバイスを用いた実験のデモンストレーションを行う予定です。	1日 12時~16時	電子光デバイスシ ステムグループ	D棟 1階 D146
13	よい決め方と求め方を考える	日々の生活の中で何気なく行っているスーパーでの商品選びから、公的に行われる選挙のような ものまで人間は様々な場面で意思決定を行っています。このような意思決定の諸相をポスター 展示するとともに、意思を決定する際に必要とされる効率的な求め方を紹介します。	1日 10時~16時	乾口研究室	D棟 5階 D548
14	ロボットアームの動きに 触れてみよう	ロボットアームの動作のデモを行います。	1日 10時~15時	原田研究室	F棟 5階 F521
15	ナ/テケって何? ナ/テクを体験しよう。	ナノサイエンス・ナノテクノロジー先端実習装置の公開と実演:ナノテクは今世紀の科学技術になくてはならないものと言われています。1ナノメートルは10億分の1メートル、原子の10倍ぐらいの大きさで、直接目では見えない世界です。ここでは最新の技術を使ってそれを皆さんにお見せします。	1日 10時~12時 13時半~16時	エマージングサイエ ンスデザインR ³ セ ンター	G棟 1階
16	数理モデルに触れてみよう	数理モデルとは、自然、物理、社会等多様な現象を数学的に記述したものです。数理モデルを構成し数学的手法を用いて解析することを通じて、詳細な法則・性質の発見や、現象の起因となる原理を見いだし再現が可能となることが期待できます。本研究室では様々な現象に関して微分方程式を用いた数理モデルを構成し、それを数値シュミレーションや様々な数学的手法を用いて解析しています。今回の研究室紹介では、数理モデルをはじめとする実社会と数学の関係について、また数理モデルの例と大学で学ぶ数学の一端をご紹介します。	1日 10時~11時半 13時~14時半 15時~16時半	小林·石渡 研究室	J棟 6階 J617
17	ゲームで体験!? 量子コンピュータの世界	量子コンピュータは、最も基本的な物理法則である、量子力学の原理で計算をする次世代のコンピュータです。2025年にはほぼ全てのパーツを国産で組み上げた純国産量子コンピュータが稼働を始め、大阪関西万博にて阪大の量子コンピュータを接続し展示しました。量子コンピュータは、セキュリティーや材料・化学そしてAI等様々な分野でその威力を発揮すると期待されています。しかし量子力学は分かった気持ちになることが難しい分野でもあります。今回は、我々が開発したパズルゲーム「QuantAttack」や量子コンピュータの仕組みを紐解きます。小学生でも体験できますので、お気軽にご参加ください。	1~2日 10時~15時	藤井研究室	豊中共創棟B 5階 B501,502